Real Estate AI Agent Configuration Guide

Real Estate AI Agent - Complete Configuration & Implementation Guide

By team on 17 min read
Intermediate

The Real Estate AI Agent transforms property discovery through intelligent search capabilities, market insights, and automated enquiry management. This comprehensive guide covers everything you need to configure, customize, and deploy the Real Estate AI Agent in your property platform.

Overview

The Real Estate AI Agent provides intelligent property assistance through natural language processing, automated property matching, and comprehensive market analysis. It integrates seamlessly with property platforms to enhance user experience and increase lead conversion rates.

Key Capabilities

  • Natural Language Property Search - Users can describe their property needs conversationally
  • Intelligent Property Matching - AI-powered property recommendations based on preferences
  • Market Insights & Analytics - Real-time market data and suburb analysis
  • Automated Enquiry Generation - Smart lead capture and follow-up management
  • Multi-channel Deployment - Web, mobile, WhatsApp, and Messenger integration

System Architecture

graph TB
    User[User] --> Interface[Multi-Channel Interface]
    Interface --> |Web Portal| WebPortal[Property Website]
    Interface --> |Mobile App| MobileApp[Real Estate App]
    Interface --> |WhatsApp| WhatsApp[WhatsApp Business]
    Interface --> |Voice| VoiceInterface[Voice Assistant]

    WebPortal --> NLP[NLP Engine]
    MobileApp --> NLP
    WhatsApp --> NLP
    VoiceInterface --> NLP

    NLP --> PropertyMatcher[Property Matching Engine]
    PropertyMatcher --> PropertyDB[(Property Database)]
    PropertyMatcher --> MarketData[(Market Data)]
    PropertyMatcher --> UserProfile[(User Profiles)]

    PropertyDB --> |Property Details| PropertyAPI[Property APIs]
    MarketData --> |Market Insights| MarketAPI[Market Data APIs]

    PropertyAPI --> |CoreLogic| CoreLogic[CoreLogic API]
    PropertyAPI --> |Domain| Domain[Domain API]
    PropertyAPI --> |REA| REA[RealEstate.com.au]

    MarketAPI --> |Pricing| PricingEngine[Pricing Engine]
    MarketAPI --> |Analytics| AnalyticsEngine[Analytics Engine]

    PropertyMatcher --> LeadEngine[Lead Management]
    LeadEngine --> CRM[CRM Integration]
    LeadEngine --> EmailSystem[Email Automation]
    LeadEngine --> Notifications[Push Notifications]

    CRM --> |Salesforce| Salesforce[Salesforce CRM]
    CRM --> |HubSpot| HubSpot[HubSpot CRM]

Core Features Configuration

1. Natural Language Property Search

The Real Estate AI Agent uses advanced NLP to understand complex property requirements and preferences.

Search Configuration Parameters

const propertySearchConfig = {
  // Language understanding settings
  nlp: {
    languages: ["en", "es", "fr"], // Supported languages
    confidence_threshold: 0.75,
    fallback_behavior: "clarify_requirements",
  },

  // Property entity extraction
  entity_extraction: {
    property_types: {
      enabled: true,
      types: [
        "house",
        "apartment",
        "townhouse",
        "villa",
        "studio",
        "penthouse",
      ],
      synonyms: {
        flat: "apartment",
        condo: "apartment",
        home: "house",
      },
    },

    location: {
      enabled: true,
      include_suburbs: true,
      include_postcodes: true,
      include_landmarks: true,
      radius_search: true,
      max_radius_km: 50,
    },

    price_range: {
      enabled: true,
      currency: "AUD", // Default currency
      flexible_range: 0.1, // 10% flexibility
      include_rent: true,
      include_sale: true,
    },

    property_features: {
      bedrooms: { min: 0, max: 10 },
      bathrooms: { min: 0, max: 10 },
      parking: { min: 0, max: 10 },
      land_size: { unit: "sqm", min: 0, max: 10000 },
      building_size: { unit: "sqm", min: 0, max: 1000 },
    },

    amenities: [
      "pool",
      "gym",
      "garden",
      "balcony",
      "garage",
      "air_conditioning",
      "heating",
      "dishwasher",
      "built_in_wardrobes",
      "study",
      "ensuite",
    ],
  },
};

Implementation Steps

  1. Initialize Property Search Engine
import { PropertySearchEngine } from "@avestalabs/realestate-agent";

const searchEngine = new PropertySearchEngine(propertySearchConfig);
await searchEngine.initialize();

// Load property database
await searchEngine.loadPropertyData({
  data_source: "your_property_database",
  update_frequency: "hourly",
  include_off_market: false,
});
  1. Configure Search Handlers
const searchHandlers = {
  property_search: handlePropertySearch,
  suburb_analysis: handleSuburbAnalysis,
  price_estimate: handlePriceEstimate,
  market_trends: handleMarketTrends,
  property_comparison: handlePropertyComparison,
};

searchEngine.registerSearchHandlers(searchHandlers);

2. Intelligent Property Matching

Configure the AI matching algorithm to provide personalized property recommendations.

Property Matching Algorithm Flow

flowchart TD
    UserQuery[User Search Query] --> ParseQuery[Parse Requirements]
    ParseQuery --> ExtractEntities[Extract Entities]

    ExtractEntities --> Location[Location Preferences]
    ExtractEntities --> Budget[Budget Range]
    ExtractEntities --> Features[Property Features]
    ExtractEntities --> Lifestyle[Lifestyle Preferences]

    Location --> LocationScore[Calculate Location Score]
    Budget --> BudgetScore[Calculate Budget Score]
    Features --> FeatureScore[Calculate Feature Score]
    Lifestyle --> LifestyleScore[Calculate Lifestyle Score]

    LocationScore --> WeightedScore[Apply Weighted Scoring]
    BudgetScore --> WeightedScore
    FeatureScore --> WeightedScore
    LifestyleScore --> WeightedScore

    WeightedScore --> UserProfile[Consider User Profile]
    UserProfile --> PersonalizationBoost[Apply Personalization Boost]

    PersonalizationBoost --> MarketContext[Add Market Context]
    MarketContext --> FinalScore[Calculate Final Score]

    FinalScore --> Threshold{Score > Threshold?}
    Threshold -->|Yes| IncludeProperty[Include in Results]
    Threshold -->|No| ExcludeProperty[Exclude Property]

    IncludeProperty --> RankResults[Rank by Score]
    RankResults --> DiversityCheck[Apply Diversity Rules]
    DiversityCheck --> FinalResults[Present Final Results]

Matching Algorithm Configuration

const matchingConfig = {
  // Scoring algorithm
  scoring: {
    weights: {
      location_match: 0.25,
      price_match: 0.2,
      size_match: 0.15,
      features_match: 0.15,
      amenities_match: 0.1,
      condition_match: 0.1,
      market_potential: 0.05,
    },

    // Matching thresholds
    thresholds: {
      excellent_match: 0.85,
      good_match: 0.7,
      fair_match: 0.55,
      minimum_match: 0.4,
    },
  },

  // Personalization settings
  personalization: {
    enabled: true,
    learning_rate: 0.1,
    user_feedback_weight: 0.3,
    browsing_history_weight: 0.2,
    similar_users_weight: 0.1,
  },

  // Recommendation diversity
  diversity: {
    ensure_variety: true,
    max_similar_properties: 3,
    include_stretch_options: true,
    stretch_budget_factor: 1.2,
  },
};

Custom Matching Rules

const customMatchingRules = {
  // Location-based rules
  location_rules: {
    sydney: {
      popular_suburbs: ["bondi", "manly", "paddington", "surry_hills"],
      transport_proximity_weight: 0.3,
      school_zone_importance: 0.2,
      beach_proximity_bonus: 0.1,
    },
    melbourne: {
      popular_suburbs: ["fitzroy", "richmond", "st_kilda", "south_yarra"],
      cafe_culture_weight: 0.2,
      tram_access_importance: 0.25,
      laneway_proximity_bonus: 0.05,
    },
  },

  // Buyer persona rules
  buyer_personas: {
    first_home_buyer: {
      budget_priority: 0.4,
      growth_potential_weight: 0.3,
      stamp_duty_considerations: true,
      first_home_buyer_grants: true,
    },
    investor: {
      rental_yield_weight: 0.35,
      capital_growth_weight: 0.25,
      maintenance_costs_factor: 0.2,
      tenant_demand_analysis: true,
    },
    family: {
      school_zones_weight: 0.3,
      safety_rating_weight: 0.25,
      park_proximity_weight: 0.2,
      family_amenities_bonus: 0.15,
    },
    downsizer: {
      maintenance_ease_weight: 0.3,
      accessibility_features_weight: 0.25,
      proximity_to_services_weight: 0.2,
      security_features_bonus: 0.15,
    },
  },
};

3. Market Insights & Analytics

Configure comprehensive market analysis and suburb insights.

Market Data Configuration

const marketAnalyticsConfig = {
  // Data sources
  data_sources: {
    primary: "corelogic", // or 'domain', 'realestate_com_au'
    secondary: ["rpdata", "onthehouse", "homely"],
    government_data: ["abs", "planning_portals"],
    update_frequency: "daily",
  },

  // Analytics modules
  analytics_modules: {
    price_trends: {
      enabled: true,
      time_periods: ["1m", "3m", "6m", "1y", "2y", "5y"],
      property_types: "all",
      include_forecasts: true,
    },

    suburb_profiles: {
      enabled: true,
      demographics: true,
      infrastructure: true,
      schools_analysis: true,
      transport_connectivity: true,
      lifestyle_factors: true,
    },

    market_indicators: {
      enabled: true,
      days_on_market: true,
      auction_clearance_rates: true,
      price_growth_rates: true,
      rental_yields: true,
      vacancy_rates: true,
    },

    comparative_analysis: {
      enabled: true,
      similar_suburbs: true,
      price_per_sqm: true,
      feature_comparisons: true,
      market_positioning: true,
    },
  },
};

Custom Market Insights

const marketInsightRules = {
  // Market condition indicators
  market_conditions: {
    hot_market: {
      criteria: {
        price_growth_3m: ">5%",
        days_on_market: "<14",
        auction_clearance: ">80%",
      },
      buyer_advice: "Act quickly, consider pre-approval",
      seller_advice: "Excellent time to sell, price competitively",
    },
    buyers_market: {
      criteria: {
        price_growth_3m: "<-2%",
        days_on_market: ">45",
        auction_clearance: "<60%",
      },
      buyer_advice: "Great negotiation opportunities",
      seller_advice: "Consider holding or price realistically",
    },
  },

  // Investment insights
  investment_analysis: {
    high_growth_potential: {
      factors: [
        "infrastructure_development",
        "population_growth",
        "employment_opportunities",
        "transport_improvements",
      ],
      risk_factors: [
        "oversupply_risk",
        "economic_dependency",
        "natural_disaster_risk",
      ],
    },
  },
};

4. Automated Enquiry Management

Configure intelligent lead capture and follow-up automation.

Lead Management Workflow

sequenceDiagram
    participant User
    participant Agent
    participant LeadEngine
    participant CRM
    participant EmailSystem
    participant RealEstateAgent

    User->>Agent: Express interest in property
    Agent->>LeadEngine: Capture lead information
    LeadEngine->>LeadEngine: Qualify lead (scoring)

    alt High Quality Lead
        LeadEngine->>CRM: Create high-priority lead
        LeadEngine->>RealEstateAgent: Immediate notification
        LeadEngine->>EmailSystem: Send instant follow-up
        EmailSystem->>User: Property details & agent contact
        RealEstateAgent->>User: Personal call within 2 hours
    else Medium Quality Lead
        LeadEngine->>CRM: Create standard lead
        LeadEngine->>EmailSystem: Schedule follow-up sequence
        EmailSystem->>User: Property insights (4 hours)
        EmailSystem->>User: Financing options (2 days)
        EmailSystem->>User: Market update (1 week)
    else Low Quality Lead
        LeadEngine->>CRM: Create nurture lead
        LeadEngine->>EmailSystem: Add to nurture campaign
        EmailSystem->>User: Educational content
    end

    CRM->>LeadEngine: Update lead status
    LeadEngine->>Agent: Provide lead updates to user

Enquiry Configuration

const enquiryConfig = {
  // Lead capture settings
  lead_capture: {
    required_fields: ["name", "email", "phone"],
    optional_fields: ["budget", "timeframe", "financing_status"],
    qualification_questions: [
      "Are you pre-approved for finance?",
      "What is your ideal timeframe?",
      "Is this for investment or owner-occupation?",
    ],
    auto_qualification: true,
  },

  // Follow-up automation
  follow_up: {
    immediate_response: {
      enabled: true,
      template: "enquiry_acknowledgment",
      include_property_details: true,
      include_agent_contact: true,
    },

    drip_campaign: {
      enabled: true,
      sequences: {
        hot_lead: [
          { delay: "1h", template: "property_insights" },
          { delay: "1d", template: "similar_properties" },
          { delay: "3d", template: "market_update" },
        ],
        warm_lead: [
          { delay: "4h", template: "property_insights" },
          { delay: "2d", template: "financing_options" },
          { delay: "1w", template: "market_update" },
        ],
      },
    },
  },

  // Agent assignment
  agent_assignment: {
    auto_assign: true,
    assignment_rules: {
      location_based: true,
      specialization_match: true,
      workload_balancing: true,
      performance_based: true,
    },
    escalation_rules: {
      high_value_threshold: 2000000, // AUD
      vip_client_flag: true,
      urgent_timeframe: "< 2 weeks",
    },
  },
};

Advanced Features Configuration

5. Property Valuation Engine

Configure AI-powered property valuation and price estimation.

Property Valuation Process

graph TD
    PropertyInput[Property Details] --> DataCollection[Collect Comparable Data]
    DataCollection --> RecentSales[Recent Sales Data]
    DataCollection --> MarketTrends[Market Trend Analysis]
    DataCollection --> PropertyFeatures[Property Feature Analysis]

    RecentSales --> ComparableAnalysis[Comparable Market Analysis]
    MarketTrends --> MarketAdjustment[Market Adjustment Factors]
    PropertyFeatures --> FeatureValuation[Feature-based Valuation]

    ComparableAnalysis --> HedonicModel[Hedonic Pricing Model]
    MarketAdjustment --> HedonicModel
    FeatureValuation --> HedonicModel

    HedonicModel --> CostApproach[Cost Approach Model]
    HedonicModel --> IncomeApproach[Income Approach Model]

    CostApproach --> EnsembleModel[Ensemble Model]
    IncomeApproach --> EnsembleModel

    EnsembleModel --> ConfidenceInterval[Calculate Confidence Interval]
    ConfidenceInterval --> ValidationCheck[Validation Against Market]

    ValidationCheck --> |Pass| FinalValuation[Final Valuation Report]
    ValidationCheck --> |Fail| ModelAdjustment[Adjust Model Parameters]
    ModelAdjustment --> EnsembleModel

    FinalValuation --> ValuationReport[Generate Valuation Report]
    ValuationReport --> User[Present to User]
const valuationConfig = {
  // Valuation models
  models: {
    primary_model: "hedonic_pricing",
    secondary_models: ["comparative_market_analysis", "cost_approach"],
    ensemble_weighting: {
      hedonic_pricing: 0.6,
      comparative_market_analysis: 0.3,
      cost_approach: 0.1,
    },
  },

  // Valuation factors
  factors: {
    property_characteristics: {
      weight: 0.4,
      factors: ["size", "bedrooms", "bathrooms", "parking", "condition"],
    },
    location_factors: {
      weight: 0.3,
      factors: [
        "suburb_desirability",
        "transport_access",
        "schools",
        "amenities",
      ],
    },
    market_conditions: {
      weight: 0.2,
      factors: ["recent_sales", "market_trends", "supply_demand"],
    },
    unique_features: {
      weight: 0.1,
      factors: [
        "views",
        "heritage",
        "architectural_significance",
        "land_potential",
      ],
    },
  },

  // Accuracy settings
  accuracy: {
    confidence_intervals: [80, 90, 95], // percentage
    margin_of_error: 0.1, // 10%
    minimum_comparables: 5,
    maximum_age_comparables: 180, // days
  },
};

6. Virtual Property Tours

Configure virtual tour integration and property visualization.

const virtualTourConfig = {
  // Tour types
  tour_types: {
    "360_photos": {
      enabled: true,
      provider: "matterport", // or 'ricoh', 'insta360'
      quality: "high",
      auto_generate_floorplan: true,
    },

    video_tours: {
      enabled: true,
      formats: ["mp4", "webm"],
      quality: "1080p",
      include_narration: true,
    },

    ar_visualization: {
      enabled: true,
      furniture_placement: true,
      renovation_preview: true,
      measurement_tools: true,
    },
  },

  // Integration settings
  integration: {
    embed_in_listings: true,
    share_via_link: true,
    mobile_optimized: true,
    vr_headset_support: true,
  },
};

Integration Channels

7. WhatsApp Business Integration

Configure WhatsApp for property enquiries and updates.

const whatsappPropertyConfig = {
  // Business API settings
  business_api: {
    phone_number: "+61400000000",
    business_account_id: "your_business_account_id",
    access_token: "your_access_token",
    webhook_url: "https://your-domain.com/webhooks/whatsapp",
  },

  // Property-specific templates
  templates: {
    property_alert: {
      name: "property_alert",
      language: "en",
      components: [
        {
          type: "header",
          format: "image",
        },
        {
          type: "body",
          text: "New property match found! {{1}} in {{2}} for ${{3}}",
        },
        {
          type: "footer",
          text: "Reply STOP to unsubscribe",
        },
      ],
    },

    inspection_booking: {
      name: "inspection_booking",
      language: "en",
      components: [
        {
          type: "header",
          format: "text",
          text: "Inspection Confirmed 🏠",
        },
        {
          type: "body",
          text: "Your inspection for {{1}} is confirmed for {{2}} at {{3}}",
        },
      ],
    },

    market_update: {
      name: "market_update",
      language: "en",
      components: [
        {
          type: "header",
          format: "document",
        },
        {
          type: "body",
          text: "Here's your monthly market update for {{1}}",
        },
      ],
    },
  },

  // Interactive features
  interactive_features: {
    property_search: true,
    inspection_booking: true,
    price_alerts: true,
    document_sharing: true,
    location_sharing: true,
  },
};

8. Website Widget Integration

Embed the property search agent into your real estate website.

const propertyWidgetConfig = {
  // Widget appearance
  appearance: {
    theme: "auto", // 'light', 'dark', 'auto'
    primary_color: "#2563eb",
    accent_color: "#f59e0b",
    position: "bottom-right",
    size: "large",
    border_radius: "16px",
    shadow: "large",
  },

  // Widget behavior
  behavior: {
    auto_open: false,
    greeting_message:
      "Hi! I'm here to help you find your perfect property. What are you looking for?",
    typing_indicators: true,
    property_cards: true,
    map_integration: true,
    save_searches: true,
  },

  // Search features
  search_features: {
    voice_search: true,
    image_search: true, // Search by property photos
    map_search: true,
    saved_searches: true,
    price_alerts: true,
  },

  // Integration settings
  integration: {
    container_id: "property-agent-widget",
    api_endpoint: "https://api.avestalabs.ai/realestate-agent",
    session_persistence: true,
    analytics_tracking: true,
    lead_capture: true,
  },
};

// Widget initialization
window.PropertyAgent.init(propertyWidgetConfig);

9. CRM Integration

Integrate with popular real estate CRM systems.

const crmIntegrationConfig = {
  // Supported CRM systems
  crm_systems: {
    salesforce: {
      enabled: true,
      api_version: "v54.0",
      sandbox: false,
      custom_fields: {
        property_preferences: "Property_Preferences__c",
        search_criteria: "Search_Criteria__c",
        lead_score: "AI_Lead_Score__c",
      },
    },

    pipedrive: {
      enabled: true,
      api_version: "v1",
      custom_fields: {
        budget_range: "budget_range",
        property_type: "property_type",
        preferred_suburbs: "preferred_suburbs",
      },
    },

    hubspot: {
      enabled: true,
      api_version: "v3",
      contact_properties: [
        "property_budget",
        "property_type_preference",
        "location_preference",
        "timeline_to_purchase",
      ],
    },
  },

  // Data synchronization
  sync_settings: {
    real_time_sync: true,
    batch_sync_interval: 3600, // 1 hour
    conflict_resolution: "crm_wins", // or 'agent_wins', 'manual'
    sync_direction: "bidirectional", // or 'to_crm', 'from_crm'
  },

  // Lead scoring
  lead_scoring: {
    enabled: true,
    factors: {
      engagement_level: 0.3,
      budget_qualification: 0.25,
      timeline_urgency: 0.2,
      financing_readiness: 0.15,
      property_specificity: 0.1,
    },
    score_ranges: {
      hot: [80, 100],
      warm: [60, 79],
      cold: [0, 59],
    },
  },
};

Customization Options

10. Branding and UI Customization

Customize the agent to match your real estate brand.

const realEstateBrandingConfig = {
  // Brand identity
  brand: {
    name: "Your Real Estate Agency",
    logo_url: "https://your-domain.com/logo.png",
    primary_color: "#1e40af", // Professional blue
    secondary_color: "#f59e0b", // Accent gold
    font_family: "Inter, sans-serif",
  },

  // Agent personality
  personality: {
    name: "PropertyBot",
    avatar_url: "https://your-domain.com/agent-avatar.png",
    tone: "professional", // 'professional', 'friendly', 'casual'
    expertise_level: "expert",
    specializations: ["residential", "investment", "luxury"],
  },

  // Custom responses
  custom_responses: {
    greeting:
      "Welcome to [Brand Name]! I'm your AI property specialist. How can I help you find your perfect home today?",
    property_found:
      "Great news! I found some properties that match your criteria. Let me show you the best options.",
    no_results:
      "I couldn't find exact matches, but I have some similar properties that might interest you.",
    enquiry_success:
      "Perfect! I've sent your enquiry to our specialist agent. They'll contact you within 2 hours.",
    goodbye:
      "Thank you for using [Brand Name]. Feel free to return anytime for property assistance!",
  },

  // Market-specific customization
  market_customization: {
    currency: "AUD",
    measurement_units: "metric",
    date_format: "DD/MM/YYYY",
    local_terminology: {
      apartment: "unit",
      realtor: "agent",
      listing: "property",
    },
  },
};

11. Advanced Search Filters

Configure sophisticated property search and filtering options.

const advancedFiltersConfig = {
  // Property characteristics
  property_filters: {
    basic: {
      property_type: ["house", "apartment", "townhouse", "villa", "studio"],
      bedrooms: { min: 0, max: 10, any: true },
      bathrooms: { min: 0, max: 10, any: true },
      parking: { min: 0, max: 10, any: true },
    },

    advanced: {
      land_size: { min: 0, max: 10000, unit: "sqm" },
      building_size: { min: 0, max: 1000, unit: "sqm" },
      year_built: { min: 1900, max: 2025 },
      condition: ["new", "excellent", "good", "fair", "renovation_required"],
    },

    features: {
      indoor: [
        "air_conditioning",
        "heating",
        "fireplace",
        "built_in_wardrobes",
        "study",
        "ensuite",
        "walk_in_closet",
        "butler_pantry",
      ],
      outdoor: [
        "pool",
        "spa",
        "garden",
        "balcony",
        "deck",
        "courtyard",
        "outdoor_entertaining",
        "shed",
        "carport",
      ],
      luxury: [
        "wine_cellar",
        "home_theater",
        "gym",
        "sauna",
        "elevator",
        "smart_home",
        "solar_panels",
        "water_tank",
      ],
    },
  },

  // Location filters
  location_filters: {
    proximity: {
      schools: { max_distance: 2000, rating_min: 7 },
      transport: { max_distance: 1000, types: ["train", "bus", "tram"] },
      shopping: { max_distance: 5000, types: ["mall", "strip", "market"] },
      healthcare: {
        max_distance: 10000,
        types: ["hospital", "clinic", "pharmacy"],
      },
    },

    lifestyle: {
      beach_distance: { max: 50000 }, // 50km
      city_distance: { max: 100000 }, // 100km
      noise_level: ["quiet", "moderate", "busy"],
      walkability_score: { min: 50, max: 100 },
    },
  },

  // Investment filters
  investment_filters: {
    financial: {
      rental_yield: { min: 0, max: 15 },
      capital_growth: { min: -10, max: 30 },
      cash_flow: ["positive", "neutral", "negative"],
      depreciation_benefits: true,
    },

    market: {
      vacancy_rate: { max: 5 },
      days_on_market: { max: 60 },
      auction_clearance: { min: 60 },
      price_growth_12m: { min: -5, max: 50 },
    },
  },
};

Analytics and Reporting

12. Performance Analytics

Configure comprehensive analytics for the Real Estate AI Agent.

const realEstateAnalyticsConfig = {
  // User interaction tracking
  interaction_tracking: {
    enabled: true,
    events: [
      "search_initiated",
      "property_viewed",
      "enquiry_submitted",
      "inspection_booked",
      "agent_contacted",
      "property_saved",
      "search_refined",
    ],
  },

  // Conversion metrics
  conversion_tracking: {
    funnel_stages: [
      "visitor",
      "searcher",
      "property_viewer",
      "enquirer",
      "qualified_lead",
      "inspection_booked",
      "offer_made",
      "sale_completed",
    ],

    conversion_goals: {
      enquiry_rate: { target: 15 }, // 15% of searchers
      qualification_rate: { target: 60 }, // 60% of enquiries
      inspection_rate: { target: 40 }, // 40% of qualified leads
      offer_rate: { target: 25 }, // 25% of inspections
    },
  },

  // Agent performance metrics
  agent_metrics: {
    response_accuracy: true,
    user_satisfaction: true,
    search_success_rate: true,
    lead_quality_score: true,
    conversation_completion_rate: true,
  },

  // Business intelligence
  business_intelligence: {
    popular_searches: true,
    market_demand_analysis: true,
    price_point_analysis: true,
    geographic_heat_maps: true,
    seasonal_trends: true,
  },
};

Deployment and Maintenance

13. Production Deployment

Set up your production environment for the Real Estate AI Agent.

Environment Configuration

# Environment variables
REALESTATE_AGENT_API_KEY=your_production_api_key
REALESTATE_AGENT_ENVIRONMENT=production
REALESTATE_AGENT_LOG_LEVEL=info

# Database configuration
DATABASE_URL=postgresql://user:password@host:port/realestate_db
REDIS_URL=redis://host:port
ELASTICSEARCH_URL=https://host:port

# External service API keys
CORELOGIC_API_KEY=your_corelogic_key
DOMAIN_API_KEY=your_domain_key
GOOGLE_MAPS_API_KEY=your_google_maps_key
WHATSAPP_ACCESS_TOKEN=your_whatsapp_token

# CRM integration
SALESFORCE_CLIENT_ID=your_salesforce_client_id
SALESFORCE_CLIENT_SECRET=your_salesforce_client_secret
HUBSPOT_API_KEY=your_hubspot_key

# Security settings
JWT_SECRET=your_jwt_secret
ENCRYPTION_KEY=your_encryption_key

Docker Configuration

FROM node:18-alpine

WORKDIR /app

# Install dependencies
COPY package*.json ./
RUN npm ci --only=production

# Copy application code
COPY . .

# Create non-root user
RUN addgroup -g 1001 -S nodejs
RUN adduser -S realestate -u 1001

# Change ownership
RUN chown -R realestate:nodejs /app
USER realestate

EXPOSE 3000

CMD ["npm", "start"]

14. Monitoring and Maintenance

Implement comprehensive monitoring for production deployment.

Health Checks

const healthChecks = {
  // System health
  system: {
    memory_usage: { threshold: 85 }, // percentage
    cpu_usage: { threshold: 80 },
    disk_space: { threshold: 90 },
    response_time: { threshold: 2000 }, // milliseconds
  },

  // External services
  external_services: {
    property_database: {
      endpoint: "/health/property-db",
      timeout: 5000,
      retry_attempts: 3,
    },
    market_data_api: {
      endpoint: "/health/market-data",
      timeout: 10000,
      retry_attempts: 2,
    },
    crm_integration: {
      endpoint: "/health/crm",
      timeout: 5000,
      retry_attempts: 3,
    },
  },

  // Business metrics
  business_health: {
    search_success_rate: { threshold: 90 }, // percentage
    enquiry_conversion_rate: { threshold: 10 },
    user_satisfaction_score: { threshold: 4.0 }, // out of 5
    agent_response_accuracy: { threshold: 85 },
  },
};

Automated Maintenance Tasks

const maintenanceTasks = {
  // Daily tasks
  daily: [
    "update_property_listings",
    "refresh_market_data",
    "clean_expired_sessions",
    "backup_user_preferences",
  ],

  // Weekly tasks
  weekly: [
    "retrain_recommendation_model",
    "update_suburb_profiles",
    "analyze_search_patterns",
    "generate_performance_reports",
  ],

  // Monthly tasks
  monthly: [
    "full_market_analysis_update",
    "user_behavior_analysis",
    "model_performance_evaluation",
    "security_audit",
  ],
};

Troubleshooting Guide

Common Issues and Solutions

1. Property Search Accuracy Issues

Problem: Agent returns irrelevant properties Solution:

// Improve search relevance
const searchOptimization = {
  // Adjust matching weights
  matching_weights: {
    location_match: 0.35, // Increase location importance
    price_match: 0.25,
    features_match: 0.2,
  },

  // Add negative feedback learning
  feedback_learning: {
    enabled: true,
    negative_feedback_weight: 0.5,
    positive_feedback_weight: 0.3,
  },
};

2. Market Data Synchronization Issues

Problem: Outdated or missing market data Solution:

// Implement data validation and fallback
const dataValidation = {
  validation_rules: {
    max_age_hours: 24,
    required_fields: ["price", "suburb", "property_type"],
    data_quality_threshold: 0.95,
  },

  fallback_strategy: {
    use_cached_data: true,
    alternative_sources: ["backup_api", "manual_data"],
    alert_administrators: true,
  },
};

3. High Response Times

Problem: Slow agent responses Solution:

// Implement caching and optimization
const performanceOptimization = {
  caching: {
    property_searches: { ttl: 300 }, // 5 minutes
    market_data: { ttl: 3600 }, // 1 hour
    suburb_profiles: { ttl: 86400 }, // 24 hours
  },

  database_optimization: {
    connection_pooling: true,
    query_optimization: true,
    indexing_strategy: "comprehensive",
  },
};

Best Practices

1. User Experience Optimization

  • Progressive Search Refinement: Start broad, then narrow down based on user feedback
  • Visual Property Presentation: Always include high-quality images and virtual tours
  • Contextual Recommendations: Consider user's search history and preferences
  • Transparent Pricing: Always display accurate, up-to-date pricing information

2. Data Quality Management

  • Regular Data Validation: Implement automated checks for data accuracy and completeness
  • Multiple Data Sources: Use redundant data sources to ensure reliability
  • Real-time Updates: Keep property listings and market data current
  • Quality Scoring: Implement quality scores for properties and data sources

3. Lead Management Excellence

  • Rapid Response: Ensure immediate acknowledgment of all enquiries
  • Lead Qualification: Implement intelligent lead scoring and qualification
  • Personalized Follow-up: Tailor follow-up communications based on user preferences
  • Agent Assignment: Match leads with the most suitable agents

Support and Resources

Getting Help

Training Resources

  • Agent Configuration Workshop: Monthly online workshops
  • Best Practices Guide: Comprehensive implementation guide
  • Video Tutorials: Step-by-step configuration videos
  • Case Studies: Real-world implementation examples

Conclusion

The Real Estate AI Agent provides a comprehensive solution for transforming property discovery and lead generation through intelligent automation and personalization. By following this configuration guide, you can deploy a fully functional property assistant that enhances user experience and drives business growth.

For enterprise features, custom integrations, or specialized requirements, contact our real estate solutions team at realestate@avestalabs.ai to discuss your specific needs.